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c ' all to axially symmetric flow since the presence of
'the radial term In the equation of continuity des-

The governing differential equation for the troys the linear character of the hodograph equations.
one-dimensional, transonic flow in a laval nozzle
in the vicinity of the throat was obtained in the For such problems of more general character IC
non-dimensional form. A least square finite ele- is necessary to work in the physical plane and solve
ment technique was used with a linearly Interpol- the governing system of non-linear equations as
atIng polynomial to reduce the governing equation they stand. Taylorl2 used series expansion in the
to a sbstem of non-linear algebraic equations neighborhood of the sonic throat, Oswatiltsch and

I which were solved numerically by Newton's method. Rothstelnl3developed an Iterative technique and
The system of partial differential equations for F 1mons calculated the flo.jn a hyperbolic nozzle

Sthe two dimensional flow in a laval nozzle was also by a relaxation method.
obtaincd in the non-dimensional form. The method
of integral relations was used to replace the A recent publlcation n e use of the method
original system of partial differential equations of integral relations for trasoic flow in nozzles
by a system of ordinary differential equations. has been published by Liddle' 1 . Chen 1 7, in his
Using the least square finite element technique a finite element solution to the nozzle problem was
computer program was developed for the construction unable to predlc the location of a shock in the
and solution of the non-linear equations for the flow. Liddle'sl 'method to be valid requires
M laval nozzle problem. The results including the that there be no shocks in the flow and though this

M location of the shock in the flow are presented, method can give solutionsitxtending into the super-
sonic region, the solutions are invalid if there are
'shock waves or local wall curvature discontinuities.

1. Introduction I ;
, 1 This paper sets out to solve the direct problem .

No other aspect of transonic flow has been of transonic flow in a laval nozzle and to determine
the subject of serious study for nearly so long as the location of the weak shock using a least square
that of flows In ducts and nozzles. It is remark- finiti.element technique;
able that the essential features of steady acceler-
sting one dimensional flows at speeds up to and The governing equation derived in the following i 4
beyond the speed of sound had been well described section can be solved exactly by analytical methods
.and understood by the end of the last century, be- and so it was selected as a model equation to
ifore the rapid development of modern fluid mechan- illustrate the numerical method and also because
ies. and a realistic analysis on a one dimensional the accuracy of the numerical computation could be
,basis proved possible. In particular, because compared with the exact solution, the ultimate aim .0
'viscous effects in continuously acceleratIng nozzle being to use the numerical method developed in this
:flows are small, the concept of boundary layer was paper for similar problems with shocks.
Dot essential for progress.

The survey papers of Hall and Suttonland of 11. Assumptions and Basic Equations
$ichel 2outline progress with theories for nozzle For One-Dimensional Flow
flow, the latter paper in the wider context of
viscous transonic flow. Other newer techniques are Consider one-dimensional, isentropic, steady,
due to Moretti4adapted by Hidgal. 4 et.al. and Inviscid. transonic flow in a nozzle of varying

Thompson5 . Holt6and others have introduced to the cross-sectional area subject to no wall friction and
nozzle problem the method of integral relations heat exchange with the walls. The equations of
which had been successful in solving other trants- continuity and momentum are
onie flow problems. d (AU) -0 1)

The problem of transonic flow in nozzles is I
difficult because'the governing equations are of UdU +p 0 (2)
the mixed type, changing from elliptic in the low P

speed region near the nozzle entry to hyperbolic in where, p Is the density. A Is the area of cross-
the supersonic region. In two dimensional Irrota- section, V is the velocity and p Is the pressure.
tional flow, the problem can be solved by the hodo- For Isentropic flow the speed of sound, a. Is re-

:r graph method, developed successively by Lighthill7., lated to the compressibility of the fluid by
Frankl e and Cherry9 o 10, I . In spite of its high
state of development, the hodograph method has 2
limitations. It can only be applied to the design a (3)
problem in plane flow and cannot be used in the dp

direct problem of calculating the flow field corres-
S ponding to a given contour. It does not apply at / I
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] 2 - 4 -11- "

L.(3) ~d
(116)

] I a
~Vdu-,F: 4 (4)

SFnal ly, sisice this paper will ,c prf..arlly concern-

Eq. (1) can be written as ed with discontinuous solutions, it is nece.sary to
apply the jtirup conditlon

EA dp + f !(A) 0 (5) 2 2 i (7)

Substitutine for dp fro-i Eq. (5) in Eq. (4) and
using the rclation H - V/a vlhcre . is the riach num- which Dust be satisfied by weak solutions of Iq.(1 4 ).
ber, gives on sirnpliciztion

(2 1.__I State-cnt and Phy'i-:'l Con ,-,1_ -0 (6) of the dAaval :;'k ?roblc.
dx 2 A dx le

The one diner.sional nozzle problem involves the

The energy eqcuation in differential form is solution of the non-linear ordinary differential
equation. Eq. (14) with the boundary conditions at

d(a2 - U2) 0 (7) the entry and' the exit being specified as
2

where y is the ratio of specific heats. uDifferen
-  V(-a) - V., V(a) U V

tiating each side of the relation X2 2 () and sub- 1
stituting for d(a

2) from Eq. (7) gives on sinplifi- where V,,is greater than V and the jump condition
cation is as indicated by Eq. 1.

2) = a2d( L ()
d(U I +- 2  y

2
Substituting for d( 2 ) from Eq. (8) into Eq. (6) and
simplifying yields

2 2( + I-- dA 1 2"M2 •0
I1+ 2  1 A~~' dx I - 2  A d•

Assuming transonic flow, let

X2  I +6 (10) ,
Figure 1. Laval nozzle.

where 6 < 1. Assuming a parabolic wall shape, let Eq. (14) is a first order differential equation

A I 1 + ox2  (11) which has to satisfy two boundary conditions and
thus it is difficult to obtain the correct solution

where a is some constant depending on the nozzle with shock using standard nurnorical -ethods. Sever-

geometry. Differentiating Eqs. (10) and (11) with al numerical techniques were investigated and the

respect to x and substituting in Eq. (9) gives least square finite element technique develeped gave
the desired results.

d6 2(1 H2) 2  2c - 0 - (12) Solving Eq. (14) analytically gives

dx 2

Expanding (+cx
2)t- in a Taylor series for small x, + 4 constant - tn(_--) - V (18)

i.e. in the vicinity of the throat and substituting

Eq. (10) in Eq. (12) and neglecting O(x2) and 0(62)
terms, Eq. (22) reduces to For a sonic throat V - 0 at 0. 0, thus

___ + ,)- 0 (13) . -,e1)
d4 - (!1 - V (19),

Zq. (13) was scaled to give the one-diensional. Eq. (15) indicajtes that for M >1. V is nea-

equation of transonic flow In a laval nozzle tn the tive and for M < 1, V is positive. Using (29), the

normalized form as two branches of the laval nozzle curve are sketched
in figure 2. If the flow in the nozzle vas from

2 left to right four solutions are possible, depending

- (1-V) - 0 on the value of the entry and exit Mach numbers.

Eq. (14) can have a subsonic solution In which

2e .the flow accelerates from the inlet to the throat

42_ 0 (15) and decelrates downstream of the throat and exits
t subsonic speed (3-2, figure 2). A continuously

- ... - -.



V '(.* -. tat IsfYltig, Eq. (1?). The evmp~lctc! a&t- of

laval noz~zle corvea are plotted In figure 6.

I4.

Figure 2. Two branches of the Laval nozzle curves

accelerating flow solution can asoe be obtained in E%
which the flow enters with stibacaic speed, attains
a M!ach number of unity in the throat section and Fgr .Gahcldtriaino h hc
exits froma the nozzle at supersonic speed (3-4, FiurlutCapicaoen ri.io fth hc
figure 2). A solution that would be obtainked for asouin
supersonic diffuser in which the flow could enter

with a supersonic velocity, decelerate to reach the
sonic speed in the throat and exit again with sub-
sonic speed is the curve 1-2 shown in figure 2. if
V> Vi, the flow will enter with subsonic speed,t-

become sonic in the throat, attain supersonic speed 10.4 -
downstream of the throat, have a jump In velocity
through a shock and exit with a subsonic velocity
from the nozzle. The two possible solutions of
Interest in this paper are shown in figures 3 and 4. CL .4 0.4 'OSC

IV/

CFigure 6. Laval nozzle curves for different end
conditions.

Figre . Te sbsoic oluionIV. Numerical Procedures Investigated

Several techniques were Investigated to obtain
- -. the solution with shock and the modified least

V square method was found to give the desired results.
1 VA>V A detailed discussion of the other methods investi-

gated Is beyond the scope of this paper, but a brief

[ Vnmention is made with reference to thorn 
here.

The fourier sine transform technique was used
Cto solve the governing equation and it resulted in

a solution resembling the subsonic solution. The
one and two term least square method using fourter
series and imposing the additional conditions that

I V -=0(M-=1) and dV/dC < 0 at the throat resulted in

Figue 4 Thesoltio wit shck a solution which did resemble the shock solution
Figue 4 Th soutio wih sockbut was not a good reproduction of the exact solu-

'tien. The results are sketched in figure 7., ToShecifngn Vn, the exit condition, the value obtain an acceptable result, a larger number of
Df hecostntIn Eq. (18) can be determined and terms In the fourier series would have to be consi-

'the shock location In the model. example can be dered and the effort required to obtain the final C
obtained graphically. Using Eq. (19) AOB was plotted form of the non-linear algebraic equations would be
as shown In figure 5. DC was then plotted as a prohibitive. tHence the simpler least square finite~I ror Image of 01 about the C-axis. Using Vn, the element technique was preferred over the other

roastant In Eq. (18) was determined and the curve methods.
vEI as plotted on the some figure. DOWI inter- Distritbution/_

gets the reflected curve OC at E, thus riving the .I A alblt OO
*.cation of the discontinuity. The shock solution Aviablt CO4d

Irepresented by AOCFED with the jump condition 1adj
L._Dist I. su~ia



V i i
V, a- . .. (21)

2,' "' and simillarly In the Sntcrval r to F
,i *1*0

V- i~ -Vll£ b -V|+--- (22)

a 
(222

Let R- --- - t(1-V) (23)
1. Analytical Solution with Shock.

2. Fourier Sine Transform Method. where, R is the residue. R - 0 if the solution of
3. 2-Term Least Square riethod. the governitig equation is exact. SubstitutLing for

4. I-Tenn Least Square 'ethod V from Eq. (20) gives

R = b~a~ )-(-a-b,) (24)

Figure 7. Plot of V versus C for two other numer-
ical techniques investigated. The total error in the two elements being considered

simultaneously is given by

V. The Least Square Finite Element Technique C1 2d i+lR2

The model equation considered was R d+ f C dC Total error (25)

d(v2) The system of non-linear equations to be solved

dv - C(l-V) = 0 (14) was obtained by minimizing the total error as

a C1  2C+with the boundary conditions V(-a) - V and V(a) - 2v + R f 0
Va. The range between C = -a to - awas divided i - - R 0 (26)
into a finite number of intervals and for illustra-
tion purposes figure 8 shows 4 elements under consi- So. for n unknowns in V, there are n non-linear
deration. Vl and VS are the specified entry and equations to be solved. Thus for three unknowns the
exit conditions respectively and V2 ,V3 and V4 were system of equations is
computed as follows.

a E 22 a -C3 2
F, VV - ft R dt+ Rfd& -0 (27)
1V23 2 1 2 C2

SC R 2 F 2 V3 V4) " R d + a f R2d = 0 (28)

(2(1 C C 82V"3 V 3V3 "&2 3V 3  C3
C42 a t5

Figure 8. The C axis divided into 4 intervals. Newton's method was used to solve the system

Taking two elements simultaneously (figure 9) of algebraic equations and the iterative technique

and assuming a linear variation of V, the system of is Illustrated below. The (k+l)th iterate is given

non-linear algebraic equations was obtained in terms of the k
- th iterate as

IV) (k+l) = (v)(k)
- [j-F (30)

w .Vihere 8F1 SF1
1N 11 iv 

I lp].- 0

( [2. F I DF 2

M, V 1 -I~ f F l 2 F)2  2 3 V -3Figure 9. Development of the system of equations. 4 1F 3 3J 3  4!1

V- +bC (20) Io V

where a and b are functions of V and C, that is in [J) is a tridiagonal matrix. Lot
the interval C1.-1 to Csatrda nl) a. Let

_V_ . (k+l) -()(k) (X)



I ! i.L~n :'.it . o~f rc"-3tio~ns v..

(JIMX .<F) S. Vati rvip .ate-d for all tl , -..

1;, :;rt of res:ults thus obtaine.d v.., 7, :.-

(X) was obtained from Eq. (32) by Caurri.',n . te the location of the. :iock. -, : 1 .,ielim nat on and {V)(k+l) was then obtain d fr( m . -p w.as to check If the Jun.1p co dit i ;' , . ( )
Eq. (31). The Initial .values of V chlose~n to !.'trt v'ns satisfied. For example, cotrl 1, i C:i ., - houl.:
the Iterative process were arbitrary. The c-.ivvr- In clement 111, the valuies obtlned f,,r V2 , V 3 aoid

. fence crltvrion 's V4 were as shown In figure 11:{"
,(k4l) (33)

for a system with n unknowns, where o < 10 . JL

The solution obtained by the conv: ntional least (a 2  C 3fj (sC4  CO
square finite clei ent technique resulted In a solu- S"J"

tion resebling the subsonic one shown in figure 3. ropoote 1 VS2

The error in each element was computed by p-- o

2 curve-

11 Figure 11: Illustration of the shock fitting ajppro-

for each iteration and it was observed that when ach.

starting the iterative process by using the analy-

tically obtained values of the unknowns, the value T V 3V5 2 athen ta
of e as small in all elements except in the element parts of the sol.tion. If Vs - Vs2 then it was

I wast shl i al ns atexcept ine wa lver t concluded that a shock would occur in element 11I,
large in that element (element IV. figure 0). Thus otherwise a shock was not possible in that citrient.

tarhe ithta errorwule en eyl rgnt I e 10)al Thur Solution of Eqs. (27), (28) and (29) by the convr...-

the total error would be very large. The total error tional least square method gave one possible result,

resembling the subsonic solution, the solution of

IVV the same set of equations by the modified leastV, square method using the shock fitting approach gave
v2  I v two possible sets of results with shock, of which

the solution with a reverse shock was considered as

(4  being physically not acceptable. The two existing

; possibilities of the flow are shown in figures 12a

V4 Pand 12b, for the example considered.

V
Figure 10. Sketch of a discontinuous solution.

was minimized at each iteration and finally the V 1 V
result converged to a solution resembling the sub-

sonic solution. So a modified least square tech-_ Z 3
nique was developed in which the error in the shock i
element was not considered. The method thus became C3 Ct C3  4 CS
one of searching and subsequently fitting the shock

in the proper element.

Figure 12a. Subsonic solution.

VI. The Modified Least Square Finite Element
Technique

The same example as in the previous section has V V
been considered to illustrate the method. In the S
modified least square finite element technique the R V
shock is assumed to lie in a certain element and the

error in that element was not considered in the solu- C , (C C SC4  C,
tion of the set of equations. I

i ' t •vs
So, with reference to figure 8, the shock was

first assumed to be in element II and neglecting

C3 Figure 12b. Shock solution.
R2 dCC2  , To decide on whether to accept the subsonic

the system of equations, Eqs. (27),(28) and (29), solution or the shock solution as the appropriate

jss solved by Newton's method. Similarly, assuming result, the total error was computed for both the

ok ebe In element II and now neglecting eases by

ro _____.1 C.



. 0

I r dt 3) I \ ) 0 Vt-I-0)-0*m5522

'which f'or the cxle cun.jdrred becomes ; ... £olution withoLO a shock
" - to'ulion with a shock'

Eno sh s I F dFC1 0

32 C ~ 42
+ fs 2K dC + f R d

23

+ f R dC (36) -1.0 0o.5 ~05! 1.0

2 2 C3 2%

E En R dC + f 4R dshock -E l E2 R -+ d0.5

+ R d+ soLujion total error

E S 2 i h o u t s o c 0 .4 3 4 x 10 -2 ,+ dE (37) with shock 0.343 x 10-jQ

Of the two possible results, the solution with the
least total error was selected, that is if ENs < Es, Figure 14. Plot of V versus C

then a subsonic solution was the correct result and
if ENS > E., then a shock solution was the correct V(-0.0737)r0"051222
one. V (0"0737) : 0"0513

CAd C(lv)z0
"sofulion with o shock

soution withoul o shock
A V

Shou
C) Solution .05

Ii in. i .

ELEUENT NUMBER

Figure 13. Plot of total error versus element num-
ber.

V11. Results for the One-Dimensional Problem solufuon total error

The governing equation (14) was solved numer- Lwih thOC.11W
ically by the technique developed for the set of
end conditions:

V(-1.0) - 0.55122 , V(l.O) - 0.6 (38) Figure 15. Plot of V versus C.

V(-0.0737) - 0.051222 , V(0.0737) - 0.0513 (39) M

Both the possibilities, the subsonic solution
land solution with shock, were investigated and the
jproper solution was selected basing the deduction 0.95
;on the total error in each case. Figures 14 and
I5 are the plots of V versus C for the different
iboundary conditions. For the boundary condition In 0. . . X
Eq. (39), the values of the Hach number, H, versus ".05 2D25 0 .25 .05
X vere plotted for a - 0.25, indicated in figures
16 and 17.

the axis of a one dimensional laval

nozrle, a 0.1.

L _ _ _ _ _

- ue 6 isrbtino tm ac ube ln
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As x-0. y-0; %1 ro a~nd 31 -- on
the basis. of l:q. (43) " • , :..q n.it y the
(1L0 t iPnt v/y ;1 !.ro.c . . C. !,c vc-2o itv rise
Z9 'u/)x along the ,xI; o... .,t v' v.irn1h at the

0- origin. Then, if the :. 2 tit fes u and v are
considered linear only, t.( frol,-ing appro::i'.,tc

X relation is obtained fr1 ( ;. (43).-6:--s - 0 0"2--0

(y+l)u-Px- -* + 2w - = 0 ('4)
c' y ciy

Figure 17. Distribution of the Mach numrber along

the axis of a one di.ensional laval Since tle no;:::.1e 'Iv- ils--, trical ;:t'
tozzle, a = 0.25. respvct to tl. x-;J.xis, :n/y '.,,pr, ; . aO

x- O, Vr0. Col Sequent]. the ttrn: 2v .i,/ . .. 3: I-e
i&vor -d by moans of which Eq. (.4) teoco-cs

VIII. A Note on the Results of the One Dimensional
Analss Pv y+l (u2  (4)

The results obtained in the previous section y 2 ax
show that the nuerical technique developed can
successfully be used for similar problems with shocks. Similarly the condition of irrotationality

The analysis of ,any flow proble-s assuning the flow becornes
to be one dic-ensional, is a useful approximation.
At first sight this is surprising, since the flow
model which forms the basis of the one dimensional _v (u.. .0 (46)
method, differs profoundly from the actual physical ax 

3
y

situation. For ex-nple, the one dimensional method,
ignores the existence of a non-uniform and possibly At the -alls, in the vicinity of the thrca:

changing velocity profile and it assumes happenings for small u and v it can be shonc that

at the walls of the channel, e.g. friction, to be

felt instantaneously over the whole cross-section. V (47)
However, the one dimensional method was preferred Y

for its simplicity. The numerically obtained results
and the analytical results shown in figure 6, are in here ( )' denotes differentiation ith respect to

excellent agreement. The following sections are
devoted to the derivation and solution of the two
dimensional laval nozzle problem. X. Application of the Method of Interal Felatiens

Derivation of the Potential Equation The method of integral relations was origi:ated

.IX. by Dorodnitsyn in 1958 and was subsequently applied

The nozzle axis was selected as the x-axis and to several fluid dynamics problens. Several

the origin of the coordinate syste- was placed in scientists including Holt, Liddle and Archer have

the center of the throat. With the hypothesis of applied the MIR to the nozzle problem. This -ethod

non.vortical flow and pefect flow of a perfect gas provides a powerful tool for solving problcs govern-
ith constant specific heats CCv and . = ed by nonlinear partial differential equations with
the potential equation for cific heasC, an y = the aid of computers and appears to be well sited

to the laval nozzle problem. It is applicable to
problems of elliptic or mixed elliptic-hyperbolic

(a22 + ): (a22) - 2Z;u ! - 0 (40) type in two independent variables. Certain depen-

ay a dent variables are represented as polynonials or
fourier series in one of the Independent variables

In this ;, ; are the x and y components of velo- and the original system of partial differential

city and a, the local sonic velocity, is related to equations is replaced by a system of ordinary differ-

the critical velocity a. through ential equations for the coefficients. These ordin-

ary differential equations are then solved using the
I appropriate boundary conditions.2 , .y+I 2 _ (7 2. 2) (1)

a= 2 G + (41 For the one strip case the notations used are

i ishown in figure 18.

Substituting Eq. (41) in Eq. (40), limiting the
present investigation to the vicinity of the throat
id Introducing the dimensionless velocity components U.V1

A - ,(l4+u) and y aOy (42) V

n vhich u and v are small quantities, the potential "U

juation; Eq. (40), becomes U*,V

(2v+ u + _1_11)_ 1v ,2 _ 2(Y-1) a
y+1 -y - yYl u Figure 18. One strip notations.

- (l - -AIM V (-_o .3): _.....
7 "



11 y/Y (-11 ,h r ne utrip erpiat ions (57) .f.r a
1, '11~c wall 1,11:11'ed n1ozzle lcdt:o,

enThn as n 0 on the x-axls and n - 1 on the
channel wall Eqs. (45),(46) and (47) beroe2

I u1  u + o(O-ux 2 ) (60)

2 K + v -- + 
ll Y +l)- =0 (49) d(V')

3 x~ ~ 4-v) - 0 (61)

v Y , n v I a . 0 (50 ) w h e re , 2u + (]- x 2)
(5 0 Y crc, = Y - (62)

a(1- !xt )_ + _- 2

V1  ¥ (51) 3 a(y+l)

Integrating Eqs. (49) and (50) with respect to
7) between zero and a general value at a constant 2 cx+E F n (63)x-station gives ' cx+ G

n 2 Dv n _

fo Y T dr - f10 (yi-) _ ax-d F. = 4ayl) E = a, -- (64)

n Y1 (, 2
)+ (_ (Y+I) _ dn = 0(52)a0 (YZ n 

4
n av d Y 1 a G - 6a + Xj c= -(y+l)a (65)Ox O- n dnT- i

)
3 dq 

= 4c[6 + a2(y+l)] - 36M2  
(66)

-0 Y indn -0 (53) with the jump condition for weak solutions given by

For the one strip case a linear approximation IV2 I 0 (67)
for u and v was assumed. For the two strip case a
quadratic interpolation could be done. Denoting the As indicated by the above analysis, it was
values on the axis by suffix 0 and the values on the possible to reduce the one-strip equations to a
channel wall by suffix 1, form similar to the one dimensional governing equa-

tion and this was subsequently solved by the least
uu 0  + T(ui.-uo) (54) square finite element technique.

v - v r(v -vo) (55) Corresponding to the solution of Eq. (61) with
the boundary conditions (39) as shown in figure 15,

But v - 0 by symmetry. Substituting Eq. (51) in the curves for uo and ul are plotted for a 0.1
Eq. (25) gives and a 0.25 in figures 19 and 20.

V ny t (56) U A

Substituting for u and v and placing Ti 1 in 0.I /
Eqs. (52) and (53) gives ,

" 1 [uo(2Uo+u, ) + Ul'(Uo+2u,) ] / J -, -0.5 /' 0.5 X

+ + ' U2 2 2Y /

3 Y [" + 2u] -

(57) 
02

"3z = u + } i " - (Y,)2) (58) ,
2 Figure 19. Distribution of u along the x-axis and

Assuming a parabolic channel wall I the channel wall of a symetric two

dimensional laval nozzle with parabolic

2 are wall, a - 0.1.

where a is a constant depending on nozxle geometry,
(57) and (58) were solved for unknowns u and u1 .
The two possibilities considered while reducing these
equations further were ax2 << I and when order x2

terms were not negligible.

i- ' ' ' - J...................
0e



be'i , I ot ted in th -orre!powlj it f i... ,i :i i l t I sults; clearly Nilow th.t OIL Ji:m!,; ill vc 'cr':,,:

ut6ry• at the sane valtc of x for the , strip r.

X

U.U
-0.1

0.2 -0:;..'" . ---

*x , .- -

Figure 20. Distribution of u along the x-axis and
the channel wall of a sy:.-.etrlc two C 5
dirensional loyal nozzle with parabolic
arc walls, ot = 0.25.

XII. The One Strip Case Assu-inL3x2 -  1 Figure 21. Distribu:ion of u along the x-p-.is and
the channel wall of L sy -. e-,ic two

Assuming ax 2 << 1, the one strip equations for dimensional laval nozzle with parabolic-
a parabolic wall shaped nozzle reduce to arc walls, t = 0.1.

U= u ° + a (68)
I14

d-) - (-V) = 0 (69)

where -.
(U + g

v ,, 0  2 (70)
+ 2)-

1 X (71) .. ... .

( 1o -05 05

with the jump condition for weak solutions given by Figure 22. Distribution of the !ach nu=.ber along
2 the x-axis and the channel wall of a

IV2 ] - 0 (72) symmetric two diniensional laval nozzle
with pa-abolic-arc walls, a = 0.1.

The relation between M and 1, is
u

y+1 - (y-l).

14.,

(74)
•O M*- (75)

The least square technique was used to solve the
governing differential equation, Eq. (69).

I Corresponding to the solution of Eq. (69) with Figure 23. Distribution of u along the x-axis and

the same boundary conditions as in (39), the curves the channel wall of a sym-etric two
-for uo and uI are plotted for a = 0.1 and a = 0.25 dimensional laval nozzle with parabolic-

in figures 21 and 23 and the corresponding curves arc walls, ct - 0.25.
or Ho and H1 are plotted in figures 22 and 24.

. For a - 0.1 and 0.25 the results indicated in

An average value of the x-velocity was computed figures 21 and 23 show good agreement with the re-
Iith isuits of figures 19 and 20 in the preceding section.

Thus it can be safely concluded that ctx2 << I is a

ar o 2 (76) good approximation and it is not necessary to gothrough a more complicated and tedious analysis of
the previous section to get good results. The aver-
age values of the velocity plotted in figures 21 and

.--- -- . --. ~0~~*~~ *. .-.- --.. ... -. . . .. --.-.-. .-- -.,
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and

+a('y+l) 2b I
"0 '0-- 3 OJ 02I

Eq. (79) was .r.l\,v-d by the lcast .tjare techniquie
d.veloped.

Figure 24. Distribution of the Mach number along
the x-axis and the channel wall of a Correspondii~g LO the solution of Eq. (79) with

s)z.etric two dimensional laval nozzle the houndary cowditions V(-0.36b0) = 0.23745,
with parabolic-arc walls, a - 0.25. V(0.3660) = 0.24250, the curves for uo, u1 and

Uaverage and M,, .H and Maverag e are plotted in
23 are interpreted as the average velocity of the figures 26 and 27, where
flow in the channel. Furthermore the shock occur-
Ing at soane average value between the wall and the a 2

axis is a normal shock and the shock is located at' U u + - (82)

the point where there is a jump in the average
velocity, (uo + a/2). Figure 25 illustrates the
importance of the average velocity

04
---- -normOl 03

"0.4

Figure 25. The normal shock and the linear velocity. r i

distribution in a symmetric two dimen- 0

sional laval nozzle. 04

The first study of the continuously-accelera-

ting flow in a laval nozzle was made by Meyer
1 8

. Figure 26. Distribution of u along the x-axis and
The least square finite element method can also be the channel wall of a symmetric two

used to obtain the solution of such problems. The dimensional laval nozzle with hyperbo-

numerical and the analytical results are compared lic-arc walls.
in Appendix A.

U
L4

XlI. Application of the Least Square Finite Element
Method to L-mons' Hyperbolic Channel Flow.

The method of integral relations is now applied
to a channel flow first calculated by Emmons

1 4
. The

sysretric hyperbolic channel can be described by . o5

( " 177) 0.4

where, a - 0.5646425 and b - 0.8253356 -0.4 -0 0 02 04

The one strip equations, Eqs. (57) and (58), Fiture27. 'Distribution of the Mach number along
'for the Frwons hyperbolic nozzle in the vicinity of the Di -aribu nd the ch n alleo a

the x-axis and the channel wall of
!the throat reduce to isymmetric two dimensional laval nozzle

a( with hyperbolic-arc walls.

1U 0(7 2b2  
Emmonsl

4
had solved the problem of a two dimen- *

isional flow of a frictionless, adiabatic, perfect
2  

!gas inside a hyperbolic nozzle. Etmons' solution
(-v)as for curved shocks and since the velocity fild

-- "]after such shocks is not in general irrotational,

Ihe had considered the rotation term in the flow
where, [ollowing the shock wave. lte numerical solution

10



f i c:: . u .. , . (,*, ' t ,.;.t c.m a 'c 0c at 11c to t .! tC.
i.quarc fhxJte fi:-:.t i.d.t te e,, 1 (f.c !.trlp flea 1,robl.m.
.se lilY.' 3I | eall i .. :. .:,r t it * 1:- : a' 1I utilon

,is lh.'wn In figure 28

.A .,2 0 .2 .4 X Ac:no-.'edg,::.oiits are due to 'ro or. ,

- the autIor' o t co c r. :. i t -. " . :.,;,

I 0 rofL!.sor Char] ,s V.jnl oan , t Iie au thor rnor
n .4 -- e!tt)c r:'er aad to Profl.:sor f. ( .;btv f, r

,. tl.eir help and advice during the course of this
V . research.
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I - If the nor !i-cnsieal voloci ty pi-2 ::rbat ions :1
and v are defined by

Figure 28. Flow of a compressible fluid in a hyper-

bolic channel as obtained by F.LPnons. u 1, ( a)
a a

In terms of these conditions the irrota'ionality is

u v

-y I-A *B (84)

which enables a potential ¢ to be defined by

SA . U V
ax -

Figure 29. Distribution of rotation; constant
rotation lines; u = rotation The equation of continuity is
'= LD/a, dimensionless rotation,

(no stagnation acoustic velocity). 2 y 2
x x y+ ) y y + X yXy

The flow do-nstream of the shock wave was not

in agreement with Fmons' solution due to the fol- 2 2(y-l) *Y-1 2 2
lowing reasons. ahile E. --ons considered the com- + -- 0

plete differential equation of compressible flow to +x y yy

obtain his results, the least square method was used

to solve the approxinmate differential equation which Meyer in his investigation of the co, c. .v-
gives excellent results for transonic flows in the accelerating flow in a laval nozzle assu=.7- tl at the

vicinity of the throat of a laval nozzle. As al- velocity distribution along the axis i:crcsFed lit-

ready indicated before, only weak solutions were early, i.e.
investigated in this paper, while the results ob- 1 2

talned by Emmons was for strong shocks. Secondly, U = , 2
while Emmons had considered rotational flow down- and by direct substitution in Eq. (85) of a douh.le

stream of the shock (figure 29), this paper assumed power series for 4.
the flow to be irrotational before and after the
shock. . x yn, (7)

XIV. Conclusions he obtained the coefficients n up to and including

the sixth order terms (ia-In < 6).

A least square finite element technique was + y±2  K2.y2 1
developed to solve problems of transonic flow with " 2 + 23 4

shocks. On an average it took less than five se- 2 2 24 y

conds of CPU time on the IBM 370/Systems 167 compu- _+ __ 3l22 3
+ K y +(88)

ter to obtain the result for a problem with nine 4Kxy2
ielements using this method. The solutions obtained It was shown later that the exact solution of
Ifor the two illustrative examples show that this the approximate differential Eq. (89)

jethod is a powerful and Inexpensive tool to solve
similar problems with shocks. The equations have to
be reduced in such a manner that the jump conditions 2 + 2 (89)
can be extracted from them and at times this involves " x xX Y+1 yy

juggling with algebraic quantities, although once
this is done the solution is quite simple. The [19 the first three terms of the one given in Eq.(88).
method can be extended to the two strip case and____- ~1--- --- ---- --- ---- ~ --

{ 11
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